Distance Metric Learning: A Comprehensive Survey

نویسندگان

  • Liu Yang
  • Rong Jin
چکیده

Many machine learning algorithms, such as K Nearest Neighbor (KNN), heavily rely on the distance metric for the input data patterns. Distance Metric learning is to learn a distance metric for the input space of data from a given collection of pair of similar/dissimilar points that preserves the distance relation among the training data. In recent years, many studies have demonstrated, both empirically and theoretically, that a learned metric can significantly improve the performance in classification, clustering and retrieval tasks. This paper surveys the field of distance metric learning from a principle perspective, and includes a broad selection of recent work. In particular, distance metric learning is reviewed under different learning conditions: supervised learning versus unsupervised learning, learning in a global sense versus in a local sense; and the distance matrix based on linear kernel versus nonlinear kernel. In addition, this paper discusses a number of techniques that is central to distance metric learning, including convex programming, positive semi-definite programming, kernel learning, dimension reduction, K Nearest Neighbor, large margin classification, and graph-based approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

A Survey on Metric Learning for Feature Vectors and Structured Data

The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning a...

متن کامل

An Overview of Distance Metric Learning

In our previous comprehensive survey [41], we have categorized the disparate issues in distance metric learning. Within each of the four categories, we have summarized existing work, disclosed their essential connections, strengths and weaknesses. The first category is supervised distance metric learning, which contains supervised global distance metric learning, local adaptive supervised dista...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006